metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[[[1-ethyl-6,8-difluoro-7-(3-methylpiperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylato]cadmium]-µbenzene-1,4-dicarboxylato] trihydrate]

Xin-Ping Kang,^{a,b} Zhe An^b and Rena Kasimu^a*

^aSchool of Pharmacological Sciences, Xinjiang Medical University, Urumqi 830054, People's Republic of China, and ^bSchool of Chemistry and Life Science, Guangdong University of Petrochemical Technology, Maoming 525000, People's Republic of China

Correspondence e-mail: kasimu_xmu@163.com

Received 21 October 2010; accepted 23 October 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.009 Å; R factor = 0.044; wR factor = 0.135; data-to-parameter ratio = 12.4.

In the title layered coordination polymer, {[$Cd(C_{17}H_{18}F_2-N_3O_3)(C_8H_4O_4)$]· $3H_2O$]_n, the Cd^{II} atom exhibits a very distorted CdO₆ octahedral geometry defined by one O^3, O^4 -bidentate 1-ethyl-6,8-difluoro-7-(3-methylpiperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate (lome) ligand, one O, O'-bidentate benzene-1,4-dicarboxylate (bdc) dianion and two O-monodentate bdc dianions. Both the bdc species in the asymmetric unit are completed by crystallographic inversion symmetry. The bridging bdc dianions link the cadmium nodes into a rectangular grid lying parallel to (011). A network of N-H···O and O-H···O hydrogen bonds helps to establish the packing.

Related literature

For background on the medicinal uses of lomefloxacin, see: Mizuki et al. (1996).

Experimental

Crystal data

С

0

$Cd(C_{17}H_{18}F_2N_3O_3)(C_8H_4O_4)]$	$\beta = 103.430 \ (1)^{\circ}$
3H ₂ O	$\gamma = 100.295 \ (1)^{\circ}$
$A_r = 680.90$	$V = 1327.00 (16) \text{ Å}^3$
riclinic, P1	Z = 2
= 9.7924 (7) Å	Mo $K\alpha$ radiation
h = 11.9788 (8) Å	$\mu = 0.90 \text{ mm}^{-1}$
= 13.3981 (9) Å	T = 295 K
$t = 114.138 \ (1)^{\circ}$	$0.32 \times 0.24 \times 0.18 \text{ mm}$

Data collection

Bruker SMART CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\min} = 0.762, T_{\max} = 0.855$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	372 parameters
$vR(F^2) = 0.135$	H-atom parameters constrained
S = 1.11	$\Delta \rho_{\rm max} = 1.76 \text{ e} \text{ Å}^{-3}$
624 reflections	$\Delta \rho_{\rm min} = -0.81 \text{ e } \text{\AA}^{-3}$

6581 measured reflections 4624 independent reflections

 $R_{\rm int} = 0.014$

4108 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Table 2			
Hydrogen-bond	geometry ((Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N3-H3A···O8	0.86	2.33	2.749 (8)	110
O8−H8A···O2 ⁱⁱ	0.85	2.02	2.854 (7)	166
$O8-H8B\cdots O4^{iii}$	0.85	2.01	2.837 (7)	166
$O9-H9B\cdots O10^{iv}$	0.85	1.84	2.687 (14)	178
$O9-H9A\cdots O5^{v}$	0.85	1.93	2.784 (9)	178
O10−H5O···O2	0.85	2.13	2.971 (10)	171
O10−H6O···O9	0.85	2.42	2.957 (14)	121

Symmetry codes: (ii) -x + 2, -y, -z + 1; (iii) x, y - 1, z - 1; (iv) -x + 1, -y, -z + 2; (v) x, y - 1, z.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge financial support from Xinjiang Medical University and Guangdong University of Petrochemical Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5699).

References

Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Mizuki, Y., Fujiwara, I. & Yamaguchi, T. (1996). J. Antimicrob. Chemother. 37 (Suppl. A), 41–45.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2010). E66, m1490-m1491 [doi:10.1107/S160053681004328X]

Poly[[[[1-ethyl-6,8-difluoro-7-(3-methylpiperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylato]cadmium]-µ-benzene-1,4-dicarboxylato] trihydrate]

X.-P. Kang, Z. An and R. Kasimu

Comment

Lomefloxacin (*H*-Lome,1,4-dihydro-6,8-difluoro-1-ethyl-7- (3-methyl-1-piperazinyl)-4-oxo-3-quinoline carboxylic acid) is a new member of the class of quinolones that is used to treat infections (Mizuki *et al.*, 1996). The metal complexes of lomefloxacin have not been reported.

The title cadmium(II)-containing complex of lomefloxacin, (I), is reported here (Fig. 1).

The structure of (I) is built up from Cd^{2+} cations, lome ligands, 1,4-benzenedicarboxylate anions, three uncoordinated water molecules (Fig. 1). The Cd atom exhibits a distorted CdO₆ octahedral geometry, two O atom come from one bidentate O,*O*-bonded 1,4-dihydro-6,8-difluoro-1-ethyl-7-(3-methyl-1-piperazinyl)-4-oxo-3-quinoline carboxylic (lome) and four O atom come from three 1,4-benzenedicarboxylic acid molecules.

In title compound (I) form a square grid propagating in (Fig. 2) which 1,4-benzenedicarboxylic acid is bridged ligands.

The components of (I) are linked by O—H…O and O—H…N hydrogen bonds involving all the potential donors, generating a three-dimensional supramolecular network.

Experimental

A mixture of $Cd(NO_3)_2.2H_2O(0.5 \text{ mmol})$, lomefloxacin (0.6 mmol), 1,4-benzenedicarboxylic acid (0.25 mmol), and water (12 ml) was stirred for 30 min in air. The mixture was then transferred to a 25 ml Teflon reactor and kept at 433 K for 72 h under autogenous pressure. Colourless single crystals of (I) suitable for X-ray analysis were obtained from the reaction mixture.

Refinement

The H on the C atoms and N atoms were positioned geometrically (C—H = 0.93-0.97 Å, N—H = 0.86 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C \text{ or N})$. The H atoms on water molecules were placed at chemically sensible positions on the basis of hydrogen bonds, but these were not refined, O—H = 0.85 Å and U(H) = 1.5Ueq(O).

Figures

Fig. 1. The asymmetric unit of (I), expanded to show the Cd coordination, showing 50% displacement ellipsoids. Symmetry code: (i) x, y, z.

Fig. 2. A view of part of a two-dimensional polymeric sheet in (I) showing the square-grid connectivity (lomefloxacin molecule, H atoms and water molecule have been omitted for clarity).

Poly[[[[1-ethyl-6,8-difluoro-7-(3-methylpiperazin-1-yl)-4-oxo-1,4- dihydroquinoline-3-carboxylato]cadmium(II)]µ-benzene-1,4-dicarboxylato] trihydrate]

$[Cd(C_{17}H_{18}F_2N_3O_3)(C_8H_4O_4)]$ ·3H ₂ O	Z = 2
$M_r = 680.90$	F(000) = 690
Triclinic, <i>P</i> T	$D_{\rm x} = 1.704 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.7924 (7) Å	Cell parameters from 6498 reflections
b = 11.9788 (8) Å	$\theta = 1.8 - 25.0^{\circ}$
c = 13.3981 (9) Å	$\mu = 0.90 \text{ mm}^{-1}$
$\alpha = 114.138 \ (1)^{\circ}$	T = 295 K
$\beta = 103.430 \ (1)^{\circ}$	Prism, colourless
$\gamma = 100.295 \ (1)^{\circ}$	$0.32 \times 0.24 \times 0.18 \text{ mm}$
$V = 1327.00 (16) \text{ Å}^3$	

Data collection

Bruker SMART CCD diffractometer	4624 independent reflections
Radiation source: fine-focus sealed tube	4108 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.014$
ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001)	$h = -11 \rightarrow 11$
$T_{\min} = 0.762, \ T_{\max} = 0.855$	$k = -14 \rightarrow 13$
6581 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.135$	H-atom parameters constrained
<i>S</i> = 1.11	$w = 1/[\sigma^2(F_0^2) + (0.077P)^2 + 3.3034P]$ where $P = (F_0^2 + 2F_c^2)/3$
4624 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$

372 parameters	$\Delta \rho_{max} = 1.76 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.81 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Cd10.60296 (4)0.51272 (3)0.66873 (3)0.02772 (15)F10.7760 (5)0.0511 (4)0.2452 (3)0.0572 (10)F20.7085 (5)-0.1943 (3)0.4378 (3)0.0528 (9)N10.6840 (5)0.0195 (4)0.6257 (4)0.0319 (9)N20.7709 (6)-0.1778 (5)0.2569 (4)0.0469 (12)N30.7833 (7)-0.4099 (5)0.0884 (5)0.0608 (16)H3A0.8174-0.45740.03870.073*O10.5949 (5)0.4247 (4)0.7917 (3)0.0419 (9)O20.6845 (5)0.3373 (4)0.8987 (3)0.0499 (11)O30.6497 (5)0.3294 (3)0.5729 (3)0.0384 (9)O40.8541 (4)0.6499 (4)0.8163 (4)0.0457 (10)O50.6668 (4)0.7265 (4)0.8070 (4)0.0501 (11)O60.3731 (4)0.5173 (4)0.6448 (4)0.480 (10)O70.3361 (4)0.4186 (4)0.4565 (3)0.0381 (9)O81.0201 (6)-0.3309 (6)0.0299 (5)0.8050 (17)H8A1.1082-0.33550.03990.121*O90.4490 (9)-0.1577 (9)0.8478 (8)0.147 (4)H9B0.4402-0.14810.91230.220*O100.5836 (11)0.1231 (9)0.94280.213*
F1 $0.7760 (5)$ $0.0511 (4)$ $0.2452 (3)$ $0.0572 (10)$ F2 $0.7085 (5)$ $-0.1943 (3)$ $0.4378 (3)$ $0.0528 (9)$ N1 $0.6840 (5)$ $0.0195 (4)$ $0.6257 (4)$ $0.0319 (9)$ N2 $0.7709 (6)$ $-0.1778 (5)$ $0.2569 (4)$ $0.0469 (12)$ N3 $0.7833 (7)$ $-0.4099 (5)$ $0.0884 (5)$ $0.6008 (16)$ H3A 0.8174 -0.4574 0.0387 $0.073*$ O1 $0.5949 (5)$ $0.4247 (4)$ $0.7917 (3)$ $0.0419 (9)$ O2 $0.6845 (5)$ $0.3273 (4)$ $0.8987 (3)$ $0.0499 (11)$ O3 $0.6497 (5)$ $0.3294 (3)$ $0.5729 (3)$ $0.0384 (9)$ O4 $0.8541 (4)$ $0.6499 (4)$ $0.8163 (4)$ $0.0457 (10)$ O5 $0.6668 (4)$ $0.7265 (4)$ $0.8070 (4)$ $0.0511 (11)$ O6 $0.3731 (4)$ $0.5173 (4)$ $0.6448 (4)$ $0.0480 (10)$ O7 $0.3361 (4)$ $0.4186 (4)$ $0.4565 (3)$ $0.381 (9)$ O8 $1.0201 (6)$ $-0.3309 (6)$ $0.0299 (5)$ $0.8055 (17)$ H8A 1.1082 -0.3370 -0.0370 $0.121*$ O9 $0.4490 (9)$ $-0.1577 (9)$ $0.8478 (8)$ $0.147 (4)$ H9B 0.4402 -0.1481 0.9123 $0.220*$ H9B 0.4402 -0.1481 0.9123 $0.220*$ H9B 0.4402 -0.1481 0.9428 $0.213*$
F2 $0.7085 (5)$ $-0.1943 (3)$ $0.4378 (3)$ $0.0528 (9)$ N1 $0.6840 (5)$ $0.0195 (4)$ $0.6257 (4)$ $0.0319 (9)$ N2 $0.7709 (6)$ $-0.1778 (5)$ $0.2569 (4)$ $0.0469 (12)$ N3 $0.7833 (7)$ $-0.4099 (5)$ $0.0884 (5)$ $0.0608 (16)$ H3A 0.8174 -0.4574 0.0387 $0.073*$ O1 $0.5949 (5)$ $0.4247 (4)$ $0.7917 (3)$ $0.0419 (9)$ O2 $0.6845 (5)$ $0.3373 (4)$ $0.8987 (3)$ $0.0499 (11)$ O3 $0.6497 (5)$ $0.3294 (3)$ $0.5729 (3)$ $0.0384 (9)$ O4 $0.8541 (4)$ $0.6499 (4)$ $0.8163 (4)$ $0.0457 (10)$ O5 $0.6668 (4)$ $0.7265 (4)$ $0.8070 (4)$ $0.0501 (11)$ O6 $0.3731 (4)$ $0.5173 (4)$ $0.6448 (4)$ $0.0480 (10)$ O7 $0.3361 (4)$ $0.4186 (4)$ $0.4565 (3)$ $0.0381 (9)$ O8 $1.0201 (6)$ $-0.3309 (6)$ $0.0299 (5)$ $0.8085 (17)$ H8A 1.1082 -0.3370 -0.0370 $0.121*$ O9 $0.4490 (9)$ $-0.1577 (9)$ $0.8478 (8)$ $0.147 (4)$ H9A 0.5155 -0.1934 0.8367 $0.220*$ H9B 0.4402 -0.1481 0.9123 $0.220*$ O10 $0.5836 (11)$ 0.1897 0.9428 $0.213*$
N10.6840 (5)0.0195 (4)0.6257 (4)0.0319 (9)N20.7709 (6)-0.1778 (5)0.2569 (4)0.0469 (12)N30.7833 (7)-0.4099 (5)0.0884 (5)0.0608 (16)H3A0.8174-0.45740.03870.073*O10.5949 (5)0.4247 (4)0.7917 (3)0.0419 (9)O20.6845 (5)0.3373 (4)0.8987 (3)0.0499 (11)O30.6497 (5)0.3294 (3)0.5729 (3)0.0384 (9)O40.8541 (4)0.6499 (4)0.8163 (4)0.0457 (10)O50.6668 (4)0.7265 (4)0.8070 (4)0.0501 (11)O60.3731 (4)0.5173 (4)0.6448 (4)0.0480 (10)O70.3361 (4)0.4186 (4)0.4565 (3)0.0381 (9)O81.0201 (6)-0.3309 (6)0.0299 (5)0.8085 (17)H8A1.1082-0.3370-0.03700.121*O90.4490 (9)-0.1577 (9)0.8478 (8)0.147 (4)H9A0.5155-0.19340.83670.220*H9B0.4402-0.14810.91230.220*O100.5836 (11)0.1231 (9)0.9489 (9)0.142 (3)
N20.7709 (6)-0.1778 (5)0.2569 (4)0.0469 (12)N30.7833 (7)-0.4099 (5)0.0884 (5)0.0608 (16)H3A0.8174-0.45740.03870.073*O10.5949 (5)0.4247 (4)0.7917 (3)0.0419 (9)O20.6845 (5)0.3373 (4)0.8987 (3)0.0499 (11)O30.6497 (5)0.3294 (3)0.5729 (3)0.0384 (9)O40.8541 (4)0.6499 (4)0.8163 (4)0.0457 (10)O50.6668 (4)0.7265 (4)0.8070 (4)0.0501 (11)O60.3731 (4)0.5173 (4)0.6448 (4)0.0480 (10)O70.3361 (4)0.4186 (4)0.4565 (3)0.0381 (9)O81.0201 (6)-0.3309 (6)0.0299 (5)0.0805 (17)H8A1.1082-0.3370-0.03700.121*O90.4490 (9)-0.1577 (9)0.8478 (8)0.147 (4)H9A0.5155-0.19340.83670.220*H9B0.4402-0.14810.91230.220*O100.5836 (11)0.1231 (9)0.94280.213*
N30.7833 (7)-0.4099 (5)0.0884 (5)0.0608 (16)H3A0.8174-0.45740.03870.073*O10.5949 (5)0.4247 (4)0.7917 (3)0.0419 (9)O20.6845 (5)0.3373 (4)0.8987 (3)0.0499 (11)O30.6497 (5)0.3294 (3)0.5729 (3)0.0384 (9)O40.8541 (4)0.6499 (4)0.8163 (4)0.0457 (10)O50.6668 (4)0.7265 (4)0.8070 (4)0.0501 (11)O60.3731 (4)0.5173 (4)0.6448 (4)0.0480 (10)O70.3361 (4)0.4186 (4)0.4565 (3)0.0381 (9)O81.0201 (6)-0.3309 (6)0.0299 (5)0.8055 (17)H8A1.1082-0.3370-0.03700.121*O90.4490 (9)-0.1577 (9)0.8478 (8)0.147 (4)H9A0.5155-0.19340.83670.220*H9B0.4402-0.14810.91230.220*O100.5836 (11)0.1231 (9)0.9489 (9)0.142 (3)H5O0.61810.18970.94280.213*
H3A0.8174-0.45740.03870.073*O10.5949 (5)0.4247 (4)0.7917 (3)0.0419 (9)O20.6845 (5)0.3373 (4)0.8987 (3)0.0499 (11)O30.6497 (5)0.3294 (3)0.5729 (3)0.0384 (9)O40.8541 (4)0.6499 (4)0.8163 (4)0.0457 (10)O50.6668 (4)0.7265 (4)0.8070 (4)0.0501 (11)O60.3731 (4)0.5173 (4)0.6448 (4)0.0480 (10)O70.3361 (4)0.4186 (4)0.4565 (3)0.0381 (9)O81.0201 (6)-0.3309 (6)0.0299 (5)0.8085 (17)H8A1.1082-0.3370-0.03700.121*O90.4490 (9)-0.1577 (9)0.8478 (8)0.147 (4)H9A0.5155-0.19340.83670.220*H9B0.4402-0.14810.91230.220*O100.5836 (11)0.1231 (9)0.9489 (9)0.142 (3)H5O0.61810.18970.94280.213*
O10.5949 (5)0.4247 (4)0.7917 (3)0.0419 (9)O20.6845 (5)0.3373 (4)0.8987 (3)0.0499 (11)O30.6497 (5)0.3294 (3)0.5729 (3)0.0384 (9)O40.8541 (4)0.6499 (4)0.8163 (4)0.0457 (10)O50.6668 (4)0.7265 (4)0.8070 (4)0.0501 (11)O60.3731 (4)0.5173 (4)0.6448 (4)0.0480 (10)O70.3361 (4)0.4186 (4)0.4565 (3)0.0381 (9)O81.0201 (6)-0.3309 (6)0.0299 (5)0.0805 (17)H8A1.1082-0.3370-0.03700.121*O90.4490 (9)-0.1577 (9)0.8478 (8)0.147 (4)H9A0.5155-0.19340.83670.220*H9B0.4402-0.14810.91230.220*O100.5836 (11)0.1231 (9)0.94280.213*
O20.6845 (5)0.3373 (4)0.8987 (3)0.0499 (11)O30.6497 (5)0.3294 (3)0.5729 (3)0.0384 (9)O40.8541 (4)0.6499 (4)0.8163 (4)0.0457 (10)O50.6668 (4)0.7265 (4)0.8070 (4)0.0501 (11)O60.3731 (4)0.5173 (4)0.6448 (4)0.0480 (10)O70.3361 (4)0.4186 (4)0.4565 (3)0.0381 (9)O81.0201 (6)-0.3309 (6)0.0299 (5)0.0805 (17)H8A1.1082-0.3370-0.03700.121*O90.4490 (9)-0.1577 (9)0.8478 (8)0.147 (4)H9A0.5155-0.19340.83670.220*H9B0.4402-0.14810.91230.220*O100.5836 (11)0.1231 (9)0.94280.213*
O30.6497 (5)0.3294 (3)0.5729 (3)0.0384 (9)O40.8541 (4)0.6499 (4)0.8163 (4)0.0457 (10)O50.6668 (4)0.7265 (4)0.8070 (4)0.0501 (11)O60.3731 (4)0.5173 (4)0.6448 (4)0.0480 (10)O70.3361 (4)0.4186 (4)0.4565 (3)0.0381 (9)O81.0201 (6)-0.3309 (6)0.0299 (5)0.0805 (17)H8A1.1082-0.3370-0.03700.121*H8B0.9839-0.1577 (9)0.8478 (8)0.147 (4)H9A0.5155-0.19340.83670.220*H9B0.4402-0.14810.91230.220*O100.5836 (11)0.1231 (9)0.94280.213*
O40.8541 (4)0.6499 (4)0.8163 (4)0.0457 (10)O50.6668 (4)0.7265 (4)0.8070 (4)0.0501 (11)O60.3731 (4)0.5173 (4)0.6448 (4)0.0480 (10)O70.3361 (4)0.4186 (4)0.4565 (3)0.0381 (9)O81.0201 (6)-0.3309 (6)0.0299 (5)0.0805 (17)H8A1.1082-0.33750.03990.121*H8B0.9839-0.3370-0.03700.121*O90.4490 (9)-0.1577 (9)0.8478 (8)0.147 (4)H9B0.4402-0.14810.91230.220*O100.5836 (11)0.1231 (9)0.9489 (9)0.142 (3)H5O0.61810.18970.94280.213*
O50.6668 (4)0.7265 (4)0.8070 (4)0.0501 (11)O60.3731 (4)0.5173 (4)0.6448 (4)0.0480 (10)O70.3361 (4)0.4186 (4)0.4565 (3)0.0381 (9)O81.0201 (6)-0.3309 (6)0.0299 (5)0.0805 (17)H8A1.1082-0.33350.03990.121*H8B0.9839-0.3370-0.03700.121*O90.4490 (9)-0.1577 (9)0.8478 (8)0.147 (4)H9A0.5155-0.19340.83670.220*H9B0.4402-0.14810.91230.220*O100.5836 (11)0.1231 (9)0.9489 (9)0.142 (3)H5O0.61810.18970.94280.213*
O60.3731 (4)0.5173 (4)0.6448 (4)0.0480 (10)O70.3361 (4)0.4186 (4)0.4565 (3)0.0381 (9)O81.0201 (6)-0.3309 (6)0.0299 (5)0.0805 (17)H8A1.1082-0.33350.03990.121*H8B0.9839-0.3370-0.03700.121*O90.4490 (9)-0.1577 (9)0.8478 (8)0.147 (4)H9A0.5155-0.19340.83670.220*H9B0.4402-0.14810.91230.220*O100.5836 (11)0.1231 (9)0.9489 (9)0.142 (3)H5O0.61810.18970.94280.213*
O70.3361 (4)0.4186 (4)0.4565 (3)0.0381 (9)O81.0201 (6)-0.3309 (6)0.0299 (5)0.0805 (17)H8A1.1082-0.33350.03990.121*H8B0.9839-0.3370-0.03700.121*O90.4490 (9)-0.1577 (9)0.8478 (8)0.147 (4)H9A0.5155-0.19340.83670.220*H9B0.4402-0.14810.91230.220*O100.5836 (11)0.1231 (9)0.9489 (9)0.142 (3)H5O0.61810.18970.94280.213*
O81.0201 (6)-0.3309 (6)0.0299 (5)0.0805 (17)H8A1.1082-0.33350.03990.121*H8B0.9839-0.3370-0.03700.121*O90.4490 (9)-0.1577 (9)0.8478 (8)0.147 (4)H9A0.5155-0.19340.83670.220*H9B0.4402-0.14810.91230.220*O100.5836 (11)0.1231 (9)0.9489 (9)0.142 (3)H5O0.61810.18970.94280.213*
H8A1.1082-0.33350.03990.121*H8B0.9839-0.3370-0.03700.121*O90.4490 (9)-0.1577 (9)0.8478 (8)0.147 (4)H9A0.5155-0.19340.83670.220*H9B0.4402-0.14810.91230.220*O100.5836 (11)0.1231 (9)0.9489 (9)0.142 (3)H5O0.61810.18970.94280.213*
H8B0.9839-0.3370-0.03700.121*O90.4490 (9)-0.1577 (9)0.8478 (8)0.147 (4)H9A0.5155-0.19340.83670.220*H9B0.4402-0.14810.91230.220*O100.5836 (11)0.1231 (9)0.9489 (9)0.142 (3)H5O0.61810.18970.94280.213*
O90.4490 (9)-0.1577 (9)0.8478 (8)0.147 (4)H9A0.5155-0.19340.83670.220*H9B0.4402-0.14810.91230.220*O100.5836 (11)0.1231 (9)0.9489 (9)0.142 (3)H5O0.61810.18970.94280.213*
H9A0.5155-0.19340.83670.220*H9B0.4402-0.14810.91230.220*O100.5836 (11)0.1231 (9)0.9489 (9)0.142 (3)H5O0.61810.18970.94280.213*
H9B0.4402-0.14810.91230.220*O100.5836 (11)0.1231 (9)0.9489 (9)0.142 (3)H5O0.61810.18970.94280.213*
O100.5836 (11)0.1231 (9)0.9489 (9)0.142 (3)H5O0.61810.18970.94280.213*
H5O 0.6181 0.1897 0.9428 0.213*
H6O 0.5537 0.0588 0.8811 0.213*
C1 0.6442 (6) 0.3397 (5) 0.8035 (4) 0.0346 (12)
C2 0.6576 (6) 0.2330 (5) 0.6991 (4) 0.0303 (11)
C3 0.6622 (6) 0.2386 (5) 0.5956 (4) 0.0302 (11)
C4 0.6902 (6) 0.1292 (5) 0.5103 (4) 0.0294 (10)
C5 0.7112 (6) 0.1352 (5) 0.4121 (5) 0.0360 (12)
H5 0.7033 0.2059 0.4011 0.043*
C6 0.7428 (7) 0.0384 (6) 0.3335 (5) 0.0396 (13)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C7	0.7459 (6)	-0.0757 (5)	0.3398 (4)	0.0363 (12)
C8	0.7193 (6)	-0.0807 (5)	0.4357 (4)	0.0344 (12)
C9	0.6984 (6)	0.0206 (5)	0.5248 (4)	0.0298 (10)
C10	0.6692 (6)	0.1241 (5)	0.7075 (4)	0.0324 (11)
H10	0.6666	0.1227	0.7760	0.039*
C11	0.7087 (7)	-0.0836 (5)	0.6569 (5)	0.0432 (14)
H11A	0.6522	-0.1672	0.5909	0.052*
H11B	0.6741	-0.0756	0.7210	0.052*
C12	0.8695 (7)	-0.0743 (6)	0.6911 (6)	0.0514 (16)
H12A	0.9038	-0.0823	0.6276	0.077*
H12B	0.8822	-0.1420	0.7096	0.077*
H12C	0.9252	0.0075	0.7578	0.077*
C13	0.7198 (10)	-0.2110 (8)	0.1326 (5)	0.075 (3)
H13A	0.6421	-0.1739	0.1176	0.090*
H13B	0.8009	-0.1747	0.1139	0.090*
C14	0.6651 (10)	-0.3490 (8)	0.0593 (6)	0.077 (2)
H14A	0.6393	-0.3686	-0.0218	0.092*
H14B	0.5769	-0.3844	0.0712	0.092*
C15	0.8317 (11)	-0.3763 (7)	0.2137 (7)	0.072 (2)
H15	0.7487	-0.4155	0.2302	0.086*
C16	0.8786 (9)	-0.2384 (7)	0.2861 (6)	0.065 (2)
H16A	0.9699	-0.2010	0.2789	0.078*
H16B	0.8990	-0.2196	0.3666	0.078*
C17	0.9593 (11)	-0.4326 (8)	0.2388 (8)	0.076 (3)
H17A	1.0309	-0.4109	0.2061	0.113*
H17B	0.9204	-0.5244	0.2044	0.113*
H17C	1.0053	-0.3972	0.3213	0.113*
C18	0.8017 (6)	0.7408 (5)	0.8452 (4)	0.0354 (12)
C19	0.9057 (6)	0.8760 (5)	0.9286 (4)	0.0316 (11)
C20	0.8504 (6)	0.9742 (5)	0.9815 (5)	0.0378 (12)
H20	0.7497	0.9570	0.9688	0.045*
C21	0.9451 (6)	1.0990 (5)	1.0537 (5)	0.0368 (12)
H21	0.9081	1.1652	1.0898	0.044*
C22	0.2939 (5)	0.4741 (5)	0.5409 (5)	0.0325 (11)
C23	0.1424 (5)	0.4880 (5)	0.5192 (4)	0.0282 (10)
C24	0.1114 (6)	0.5848 (5)	0.6051 (5)	0.0343 (11)
H24	0.1860	0.6422	0.6753	0.041*
C25	-0.0300 (5)	0.5958 (5)	0.5861 (5)	0.0332 (11)
H25	-0.0498	0.6596	0.6442	0.040*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.0276 (2)	0.0200 (2)	0.0276 (2)	0.00944 (14)	0.00617 (15)	0.00477 (15)
F1	0.098 (3)	0.053 (2)	0.045 (2)	0.041 (2)	0.045 (2)	0.0264 (18)
F2	0.089 (3)	0.0242 (16)	0.0424 (19)	0.0259 (17)	0.0203 (18)	0.0111 (15)
N1	0.041 (2)	0.025 (2)	0.029 (2)	0.0112 (18)	0.0114 (19)	0.0126 (18)
N2	0.069 (3)	0.038 (3)	0.029 (2)	0.032 (3)	0.015 (2)	0.006 (2)

N3	0.093 (5)	0.036 (3)	0.052 (3)	0.032 (3)	0.040 (3)	0.005 (3)
01	0.062 (3)	0.035 (2)	0.035 (2)	0.0243 (19)	0.0226 (19)	0.0142 (17)
02	0.077 (3)	0.047 (2)	0.025 (2)	0.030 (2)	0.017 (2)	0.0125 (18)
03	0.063 (3)	0.0288 (19)	0.035 (2)	0.0267 (18)	0.0252 (19)	0.0163 (17)
04	0.047 (2)	0.0251 (19)	0.044 (2)	0.0065 (17)	0.0060 (19)	0.0040 (17)
05	0.035 (2)	0.030 (2)	0.052 (3)	0.0015 (17)	-0.0012 (19)	0.0012 (19)
O6	0.031 (2)	0.063 (3)	0.044 (2)	0.0183 (19)	0.0057 (18)	0.022 (2)
07	0.036 (2)	0.038 (2)	0.052 (2)	0.0202 (17)	0.0229 (18)	0.0239 (19)
08	0.065 (3)	0.116 (5)	0.087 (4)	0.031 (3)	0.023 (3)	0.072 (4)
09	0.108 (6)	0.150 (8)	0.122 (7)	0.065 (6)	0.011 (5)	0.014 (6)
O10	0.150 (8)	0.133 (8)	0.190 (10)	0.070 (6)	0.079 (7)	0.095 (8)
C1	0.041 (3)	0.027 (3)	0.030 (3)	0.011 (2)	0.013 (2)	0.007 (2)
C2	0.035 (3)	0.027 (3)	0.024 (2)	0.011 (2)	0.009 (2)	0.006 (2)
C3	0.035 (3)	0.023 (2)	0.028 (3)	0.012 (2)	0.010 (2)	0.007 (2)
C4	0.036 (3)	0.022 (2)	0.026 (2)	0.012 (2)	0.009 (2)	0.006 (2)
C5	0.052 (3)	0.029 (3)	0.036 (3)	0.022 (2)	0.021 (3)	0.017 (2)
C6	0.055 (3)	0.041 (3)	0.028 (3)	0.023 (3)	0.020 (2)	0.014 (2)
C7	0.046 (3)	0.028 (3)	0.024 (3)	0.018 (2)	0.006 (2)	0.002 (2)
C8	0.046 (3)	0.020 (2)	0.030 (3)	0.015 (2)	0.008 (2)	0.007 (2)
С9	0.036 (3)	0.023 (2)	0.026 (2)	0.011 (2)	0.007 (2)	0.009(2)
C10	0.044 (3)	0.025 (3)	0.023 (2)	0.011 (2)	0.010(2)	0.008 (2)
C11	0.072 (4)	0.026 (3)	0.039 (3)	0.019 (3)	0.020 (3)	0.019 (2)
C12	0.064 (4)	0.047 (4)	0.050 (4)	0.029 (3)	0.014 (3)	0.028 (3)
C13	0.100 (6)	0.076 (5)	0.027 (3)	0.057 (5)	0.005 (3)	0.002 (3)
C14	0.101 (6)	0.071 (5)	0.045 (4)	0.048 (5)	0.023 (4)	0.008 (4)
C15	0.109 (7)	0.055 (4)	0.081 (5)	0.047 (5)	0.057 (5)	0.037 (4)
C16	0.084 (5)	0.058 (4)	0.040 (3)	0.050 (4)	0.008 (3)	0.005 (3)
C17	0.127 (7)	0.062 (5)	0.089 (6)	0.069 (5)	0.069 (6)	0.049 (5)
C18	0.043 (3)	0.028 (3)	0.025 (3)	0.004 (2)	0.008 (2)	0.008 (2)
C19	0.036 (3)	0.026 (3)	0.022 (2)	0.003 (2)	0.003 (2)	0.007 (2)
C20	0.032 (3)	0.032 (3)	0.035 (3)	0.003 (2)	0.005 (2)	0.009 (2)
C21	0.041 (3)	0.026 (3)	0.032 (3)	0.010 (2)	0.009 (2)	0.006 (2)
C22	0.027 (3)	0.029 (3)	0.043 (3)	0.007 (2)	0.008 (2)	0.021 (2)
C23	0.025 (2)	0.029 (2)	0.034 (3)	0.010 (2)	0.011 (2)	0.016 (2)
C24	0.027 (3)	0.034 (3)	0.031 (3)	0.005 (2)	0.006 (2)	0.009(2)
C25	0.029 (3)	0.032 (3)	0.033 (3)	0.013 (2)	0.011 (2)	0.010 (2)

Geometric parameters (Å, °)

Cd1—O6	2.213 (4)	С5—Н5	0.9300
Cd1—O3	2.238 (3)	C6—C7	1.408 (8)
Cd1—O7 ⁱ	2.295 (4)	C7—C8	1.391 (8)
Cd1—O1	2.299 (4)	C8—C9	1.398 (7)
Cd1—O5	2.322 (4)	C10—H10	0.9300
Cd1—O4	2.510 (4)	C11—C12	1.504 (9)
F1—C6	1.356 (6)	C11—H11A	0.9700
F2	1.358 (6)	C11—H11B	0.9700
N1—C10	1.345 (6)	C12—H12A	0.9600
N1—C9	1.397 (7)	C12—H12B	0.9600

N1—C11	1.496 (6)	C12—H12C	0.9600
N2—C7	1.383 (7)	C13—C14	1.447 (11)
N2—C16	1.451 (8)	C13—H13A	0.9700
N2—C13	1.477 (8)	C13—H13B	0.9700
N3—C15	1.489 (10)	C14—H14A	0.9700
N3—C14	1.534 (10)	C14—H14B	0.9700
N3—H3A	0.8600	C15—C16	1.447 (10)
01—C1	1.251 (6)	C15—C17	1.555 (11)
O2—C1	1.258 (7)	C15—H15	0.9800
O3—C3	1.261 (6)	C16—H16A	0.9700
O4—C18	1.243 (7)	C16—H16B	0.9700
O5—C18	1.253 (7)	C17—H17A	0.9600
O6—C22	1.255 (7)	С17—Н17В	0.9600
O7—C22	1.261 (6)	С17—Н17С	0.9600
O7—Cd1 ⁱ	2.295 (4)	C18—C19	1.520 (7)
O8—H8A	0.8500	C19—C20	1.380 (8)
O8—H8B	0.8501	C19—C21 ⁱⁱ	1.380 (8)
О9—Н9А	0.8501	C20—C21	1.391 (8)
О9—Н9В	0.8500	C20—H20	0.9300
O10—H5O	0.8523	C21—C19 ⁱⁱ	1.380 (8)
010—H60	0.8530	C21—H21	0.9300
C1—C2	1.513 (7)	C22—C23	1.497 (7)
C2—C10	1.377 (7)	C23—C25 ⁱⁱⁱ	1.391 (7)
C2—C3	1.427 (7)	C23—C24	1.399 (7)
C3—C4	1.466 (7)	C24—C25	1.389 (7)
C4—C9	1.405 (7)	C24—H24	0.9300
C4—C5	1.406 (7)	C25—C23 ⁱⁱⁱ	1.391 (7)
C5—C6	1.353 (7)	С25—Н25	0.9300
O6—Cd1—O3	120.64 (16)	N1—C11—H11B	109.4
O6—Cd1—O7 ⁱ	102.79 (15)	C12—C11—H11B	109.4
O3—Cd1—O7 ⁱ	89.23 (13)	H11A—C11—H11B	108.0
O6—Cd1—O1	91.71 (16)	C11—C12—H12A	109.5
O3—Cd1—O1	79.38 (13)	C11—C12—H12B	109.5
O7 ⁱ —Cd1—O1	164.82 (13)	H12A—C12—H12B	109.5
O6—Cd1—O5	84.71 (16)	C11—C12—H12C	109.5
O3—Cd1—O5	154.35 (15)	H12A—C12—H12C	109.5
O7 ⁱ —Cd1—O5	88.65 (16)	H12B—C12—H12C	109.5
O1—Cd1—O5	97.27 (15)	C14—C13—N2	111.1 (7)
O6—Cd1—O4	136.90 (15)	C14—C13—H13A	109.4
O3—Cd1—O4	100.57 (14)	N2—C13—H13A	109.4
O7 ⁱ —Cd1—O4	88.88 (14)	C14—C13—H13B	109.4
O1—Cd1—O4	83.45 (15)	N2—C13—H13B	109.4
O5—Cd1—O4	53.83 (14)	H13A—C13—H13B	108.0
C10—N1—C9	119.0 (4)	C13—C14—N3	109.9 (7)
C10—N1—C11	117.2 (4)	C13—C14—H14A	109.7
C9—N1—C11	123.0 (4)	N3—C14—H14A	109.7
C7—N2—C16	122.9 (5)	C13—C14—H14B	109.7

C7—N2—C13	121.7 (5)	N3—C14—H14B	109.7
C16—N2—C13	113.6 (5)	H14A—C14—H14B	108.2
C15—N3—C14	111.3 (5)	C16—C15—N3	110.6 (6)
C15—N3—H3A	124.3	C16—C15—C17	110.9 (8)
C14—N3—H3A	124.3	N3—C15—C17	108.5 (6)
C1—O1—Cd1	132.5 (3)	С16—С15—Н15	108.9
C3—O3—Cd1	132.3 (3)	N3—C15—H15	108.9
C18—O4—Cd1	87.0 (3)	С17—С15—Н15	108.9
C18—O5—Cd1	95.5 (3)	C15—C16—N2	113.7 (6)
C22—O6—Cd1	114.2 (4)	C15—C16—H16A	108.8
C22—O7—Cd1 ⁱ	129.7 (3)	N2—C16—H16A	108.8
H8A—O8—H8B	108.7	C15—C16—H16B	108.8
Н9А—О9—Н9В	108.4	N2-C16-H16B	108.8
Н5О—О10—Н6О	107.2	H16A—C16—H16B	107.7
O1—C1—O2	123.6 (5)	С15—С17—Н17А	109.5
O1—C1—C2	119.5 (5)	С15—С17—Н17В	109.5
O2—C1—C2	117.0 (5)	H17A—C17—H17B	109.5
C10—C2—C3	118.5 (4)	С15—С17—Н17С	109.5
C10—C2—C1	116.5 (4)	H17A—C17—H17C	109.5
C3—C2—C1	125.0 (5)	H17B—C17—H17C	109.5
O3—C3—C2	126.5 (4)	O4—C18—O5	123.0 (5)
O3—C3—C4	117.8 (4)	O4—C18—C19	118.8 (5)
C2—C3—C4	115.6 (4)	O5—C18—C19	118.2 (5)
C9—C4—C5	119.6 (4)	O4—C18—Cd1	66.0 (3)
C9—C4—C3	122.0 (5)	O5—C18—Cd1	57.4 (3)
C5—C4—C3	118.3 (4)	C19—C18—Cd1	170.3 (4)
C6—C5—C4	120.1 (5)	C20—C19—C21 ⁱⁱ	120.3 (5)
С6—С5—Н5	119.9	C20-C19-C18	120.2 (5)
С4—С5—Н5	119.9	C21 ⁱⁱ —C19—C18	119.5 (5)
C5—C6—F1	119.3 (5)	C19—C20—C21	120.1 (5)
C5—C6—C7	123.1 (5)	С19—С20—Н20	120.0
F1—C6—C7	117.6 (5)	C21—C20—H20	120.0
N2—C7—C8	121.2 (5)	C19 ⁱⁱ —C21—C20	119.6 (5)
N2—C7—C6	123.6 (5)	C19 ⁱⁱ —C21—H21	120.2
C8—C7—C6	115.2 (5)	C20—C21—H21	120.2
F2—C8—C7	116.0 (4)	O6—C22—O7	122.8 (5)
F2—C8—C9	119.7 (5)	O6—C22—C23	117.1 (5)
C7—C8—C9	124.2 (5)	O7—C22—C23	120.1 (5)
N1—C9—C8	124.1 (5)	C25 ⁱⁱⁱ —C23—C24	119.0 (5)
N1—C9—C4	118.6 (4)	C25 ⁱⁱⁱ —C23—C22	120.5 (5)
C8—C9—C4	117.3 (5)	C24—C23—C22	120.5 (5)
N1—C10—C2	125.9 (5)	C25—C24—C23	120.5 (5)
N1	117.0	C25—C24—H24	119.8
C2C10H10	117.0	C23—C24—H24	119.8
N1—C11—C12	111.1 (5)	C24—C25—C23 ⁱⁱⁱ	120.5 (5)
N1—C11—H11A	109.4	C24—C25—H25	119.7
C12—C11—H11A	109.4	C23 ⁱⁱⁱ —C25—H25	119.7

O6—Cd1—O1—C1	140.3 (5)	F2—C8—C9—N1	8.1 (8)
O3—Cd1—O1—C1	19.4 (5)	C7—C8—C9—N1	-174.4 (5)
07 ⁱ —Cd1—O1—C1	-22.5 (9)	F2—C8—C9—C4	-171.3 (5)
O5—Cd1—O1—C1	-134.8 (5)	C7—C8—C9—C4	6.2 (8)
O4—Cd1—O1—C1	-82.7 (5)	C5—C4—C9—N1	177.0 (5)
C18—Cd1—O1—C1	-108.1 (5)	C3—C4—C9—N1	-2.1 (7)
O6—Cd1—O3—C3	-86.7 (5)	C5—C4—C9—C8	-3.5 (8)
O7 ⁱ —Cd1—O3—C3	168.9 (5)	C3—C4—C9—C8	177.3 (5)
O1—Cd1—O3—C3	-1.0 (5)	C9—N1—C10—C2	4.2 (8)
O5—Cd1—O3—C3	83.6 (6)	C11—N1—C10—C2	174.6 (5)
O4—Cd1—O3—C3	80.2 (5)	C3—C2—C10—N1	-0.4 (8)
C18—Cd1—O3—C3	83.7 (5)	C1-C2-C10-N1	-179.1 (5)
O6—Cd1—O4—C18	-22.9 (4)	C10-N1-C11-C12	-99.4 (6)
O3—Cd1—O4—C18	173.7 (3)	C9—N1—C11—C12	70.5 (7)
O7 ⁱ —Cd1—O4—C18	84.7 (3)	C7—N2—C13—C14	-140.9 (7)
O1—Cd1—O4—C18	-108.4 (3)	C16—N2—C13—C14	54.0 (10)
O5—Cd1—O4—C18	-4.4 (3)	N2-C13-C14-N3	-55.0 (9)
O6—Cd1—O5—C18	171.8 (4)	C15—N3—C14—C13	56.4 (9)
O3—Cd1—O5—C18	0.2 (6)	C14—N3—C15—C16	-54.0 (9)
O7 ⁱ —Cd1—O5—C18	-85.2 (4)	C14—N3—C15—C17	-175.8 (7)
O1-Cd1-O5-C18	80.8 (4)	N3—C15—C16—N2	52.3 (9)
O4—Cd1—O5—C18	4.4 (3)	C17—C15—C16—N2	172.7 (6)
O3—Cd1—O6—C22	-54.1 (4)	C7—N2—C16—C15	142.6 (7)
O7 ⁱ —Cd1—O6—C22	42.7 (4)	C13—N2—C16—C15	-52.6 (10)
O1—Cd1—O6—C22	-132.8 (4)	Cd1O4C18O5	7.9 (6)
O5—Cd1—O6—C22	130.1 (4)	Cd1O4C18C19	-170.6 (4)
O4—Cd1—O6—C22	145.0 (3)	Cd1O5C18O4	-8.6 (6)
C18—Cd1—O6—C22	134.0 (4)	Cd1	170.0 (4)
Cd1—O1—C1—O2	149.8 (5)	O6—Cd1—C18—O4	163.4 (3)
Cd1—O1—C1—C2	-30.0 (8)	O3—Cd1—C18—O4	-7.8 (4)
O1—C1—C2—C10	-161.2 (5)	O7 ⁱ —Cd1—C18—O4	-94.2 (3)
O2—C1—C2—C10	18.9 (7)	O1—Cd1—C18—O4	70.6 (3)
O1—C1—C2—C3	20.2 (8)	O5—Cd1—C18—O4	172.1 (6)
O2—C1—C2—C3	-159.6 (5)	O6—Cd1—C18—O5	-8.7 (4)
Cd1—O3—C3—C2	-4.1 (8)	O3—Cd1—C18—O5	-179.9 (3)
Cd1—O3—C3—C4	178.5 (3)	O7 ⁱ —Cd1—C18—O5	93.7 (4)
C10—C2—C3—O3	178.2 (5)	O1—Cd1—C18—O5	-101.5 (4)
C1—C2—C3—O3	-3.2 (9)	O4—Cd1—C18—O5	-172.1 (6)
C10—C2—C3—C4	-4.3 (7)	O6—Cd1—C18—C19	-74 (2)
C1—C2—C3—C4	174.2 (5)	O3—Cd1—C18—C19	114 (2)
O3—C3—C4—C9	-176.7 (5)	O7 ⁱ —Cd1—C18—C19	28 (2)
C2—C3—C4—C9	5.6 (7)	O1—Cd1—C18—C19	-167 (2)
O3—C3—C4—C5	4.1 (7)	O5-Cd1-C18-C19	-66 (2)
C2—C3—C4—C5	-173.5 (5)	O4—Cd1—C18—C19	122 (2)
C9—C4—C5—C6	-1.7 (8)	O4—C18—C19—C20	-166.3 (5)
C3—C4—C5—C6	177.5 (5)	O5-C18-C19-C20	15.0 (8)
C4—C5—C6—F1	-174.0 (5)	Cd1C18C19C20	76 (2)

C4—C5—C6—C7	4.7 (9)	O4—C18—C19—C21 ⁱⁱ	17.0 (8)
C16—N2—C7—C8	-50.8 (9)	O5—C18—C19—C21 ⁱⁱ	-161.7 (5)
C13—N2—C7—C8	145.6 (7)	Cd1—C18—C19—C21 ⁱⁱ	-101 (2)
C16—N2—C7—C6	130.3 (7)	C21 ⁱⁱ —C19—C20—C21	-0.5 (9)
C13—N2—C7—C6	-33.4 (10)	C18—C19—C20—C21	-177.1 (5)
C5-C6-C7-N2	176.7 (6)	C19—C20—C21—C19 ⁱⁱ	0.5 (9)
F1—C6—C7—N2	-4.5 (9)	Cd1—O6—C22—O7	8.1 (7)
C5—C6—C7—C8	-2.3 (9)	Cd1—O6—C22—C23	-173.2 (3)
F1—C6—C7—C8	176.5 (5)	Cd1 ⁱ —O7—C22—O6	-109.6 (5)
N2—C7—C8—F2	-4.8 (8)	Cd1 ⁱ —O7—C22—C23	71.8 (6)
C6—C7—C8—F2	174.2 (5)	O6—C22—C23—C25 ⁱⁱⁱ	-155.0 (5)
N2	177.6 (5)	O7—C22—C23—C25 ⁱⁱⁱ	23.7 (7)
C6—C7—C8—C9	-3.4 (8)	O6—C22—C23—C24	24.4 (7)
C10—N1—C9—C8	177.8 (5)	O7—C22—C23—C24	-156.9 (5)
C11—N1—C9—C8	8.1 (8)	C25 ⁱⁱⁱ —C23—C24—C25	1.0 (9)
C10—N1—C9—C4	-2.8 (7)	C22—C23—C24—C25	-178.4 (5)
C11—N1—C9—C4	-172.5 (5)	C23—C24—C25—C23 ⁱⁱⁱ	-1.0 (9)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+2, -*y*+2, -*z*+2; (iii) -*x*, -*y*+1, -*z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N3—H3A…O8	0.86	2.33	2.749 (8)	110
O8—H8A····O2 ^{iv}	0.85	2.02	2.854 (7)	166
O8—H8B…O4 [∨]	0.85	2.01	2.837 (7)	166
O9—H9B…O10 ^{vi}	0.85	1.84	2.687 (14)	178
O9—H9A····O5 ^{vii}	0.85	1.93	2.784 (9)	178
O10—H5O…O2	0.85	2.13	2.971 (10)	171
О10—Н6О…О9	0.85	2.42	2.957 (14)	121
	1 (1) (1			

Symmetry codes: (iv) -x+2, -y, -z+1; (v) x, y-1, z-1; (vi) -x+1, -y, -z+2; (vii) x, y-1, z.

Fig. 2